trafficking complexes conserved in eukaryotic evolution Longin-like folds identified in CHiPS and DUF254 proteins: Vesicle

نویسندگان

  • Lisa N. Kinch
  • Nick V. Grishin
  • LISA N. KINCH
  • NICK V. GRISHIN
  • Howard Hughes
چکیده

Eukaryotic protein trafficking pathways require specific transfer of cargo vesicles to different target organelles. A number of vesicle trafficking and membrane fusion components participate in this process, including various tethering factor complexes that interact with small GTPases prior to SNARE-mediated vesicle fusion. In Saccharomyces cerevisiae a protein complex of Mon1 and Ccz1 functions with the small GTPase Ypt7 to mediate vesicle trafficking to the vacuole. Mon1 belongs to DUF254 found in a diverse range of eukaryotic genomes, while Ccz1 includes a CHiPS domain that is also present in a known human protein trafficking disorder gene (HPS-4). The present work identifies the CHiPS domain and a sequence region from another trafficking disorder gene (HPS-1) as homologs of an Nterminal domain from DUF254. This link establishes the evolutionary conservation of a protein complex (HPS-1/HPS-4) that functions similarly to Mon1/Ccz1 in vesicle trafficking to lysosome-related organelles of diverse eukaryotic species. Furthermore, the newly identified DUF254 domain is a distant homolog of the m-adaptin longin domain found in clathrin adapter protein (AP) complexes of known structure that function to localize cargo protein to specific organelles. In support of this fold assignment, known longin domains such as the AP complex s-adaptin, the synaptobrevin N-terminal domains sec22 and Ykt6, and the srx domain of the signal recognition particle receptor also regulate vesicle trafficking pathways by mediating SNARE fusion, recognizing specialized compartments, and interacting with small GTPases that resemble Ypt7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Longin-like folds identified in CHiPS and DUF254 proteins: vesicle trafficking complexes conserved in eukaryotic evolution.

Eukaryotic protein trafficking pathways require specific transfer of cargo vesicles to different target organelles. A number of vesicle trafficking and membrane fusion components participate in this process, including various tethering factor complexes that interact with small GTPases prior to SNARE-mediated vesicle fusion. In Saccharomyces cerevisiae a protein complex of Mon1 and Ccz1 function...

متن کامل

Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators.

Longins are the only R-SNAREs that are common to all eukaryotes and are characterized by a conserved N-terminal domain with a profilin-like fold called a longin domain (LD). These domains seem to be essential for regulating membrane trafficking and they mediate unexpected biochemical functions via a range of protein-protein and intramolecular binding specificities. In addition to the longins, p...

متن کامل

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease

The tripartite DENN module, comprised of a N-terminal longin domain, followed by DENN, and d-DENN domains, is a GDP-GTP exchange factor (GEFs) for Rab GTPases, which are regulators of practically all membrane trafficking events in eukaryotes. Using sequence and structure analysis we identify multiple novel homologs of the DENN module, many of which can be traced back to the ancestral eukaryote....

متن کامل

IDENTIFICATION, ISOLATION, CLONING AND SEQUENCING APARTIALANNEXIN GENE FROM AUREOBASIDIUM PULLULANS

Background and Objectives: Annexin is the common name for genes and proteins that were identified as calcium-dependent phospholipid-binding proteins. Recently a more complex set of functions has been recognized for this superfamily of proteins including in vesicle trafficking, cell division, apoptosis, calcium signalling, mineralization, crystal nucleation inside the extracellular organelle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006